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Abstract— The calculation of celestial bodies has been a 
tremendous help in the field of astronomy and space 
exploration. The application of the knowledge of where a 
celestial body will be in a certain time frame helps in the 
calculation of Spacecraft Trajectory planning, Navigation 
system and much more. However, using classical methods 
such as rotational matrices to calculate the position and 
rotation of celestial bodies is a herculean task to say the 
least. The large computational power needed and other 
limitation such as the Gimbal Lock is too tormenting for 
real-time simulation.  Therefore, the use of quaternions is 
more encouraged for its scalability, efficiency, and ease of 
use. In this study, we offer a quaternion-based framework 
which provides a robust presentation of the three-
dimensional rotations. The generalized framework is derived 
for axial rotation and orbital revolution while including 
parameters such as tilt and rotation rates for use in all 
celestial bodies in the solar system. Using this approach is 
more computationally efficient in handling dynamic updates 
for real-time simulations. The application of this approach 
includes, but is not limited to, mission planning, educational 
tools, and much more. This work provides a better tool for 
making headways in the field of astrophysics and space 
exploration. 
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I.   INTRODUCTION 

Celestial objects have been observed for thousands of 
years by humankind. The wonderment of something 
much larger than ourselves floating in the sky has 
frightened mankind since the beginning of civilization. 
Early man believes astronomical object to be deities and 
gods, while the earliest written records for space 
observation were produced by the Babylonians (1600 
B.C.) who recorded the positions of planets, times of 
eclipse, etc. It then continues to ancient Greek with 
Eratosthenes calculating the circumference of the Earth 
and Heraclides forming the first model of the Geocentric 
solar system. The Geocentric model was then accepted as 
doctrine by the Roman Catholic Church and was never 
contested until the Renaissance. Enter Copernicus, the 
man who reinvented the heliocentric theory and 

challenged church doctrine [1]. Space observation then 
continued to this day with observations from big agencies 
such as NASA exploring the observable universe for a 
better understanding of our universe. 

In today’s time, we use the modelling of celestial 
bodies in our solar system for many purposes. Satellite 
deployment needs to follow strict calculation so that it is 
placed in the proper orbit around celestial bodies. Space 
mission also follows strict calculation for its landing and 
trajectory (e.g. Mars rover landing requires a precise 
model of Mars’s rotation and orbit). This knowledge is 
also used in predicting celestial events (i.e. eclipses), 
collision awareness, and many education purposes.  

Unfortunately, earlier methods of calculation require a 
significant amount of computational power and complex 
calculation for varying rotational and orbital properties. 
Using earlier methods such as the Euler Angles requires 
complex geometrical calculation to provide a 3x3 
transformation matrix which in turn, increases the 
computational power by leaps and bounds. 

In this study, the author aims to use quaternion algebra 
to provide a framework for simulating the rotation and 
orbit of all celestial bodies in the Solar System. With a 
quaternion-based framework, the computational power 
used to calculate rotation is much less than that of earlier 
methods such as Euler Angles. Using a combination of 
Kepler’s Law and quaternions, we can calculate the 
precise location of any celestial bodies in the Solar 
System using a couple of parameters in a 3D heliocentric 
frame. 

 
II.  THEORETICAL FOUNDATION 

A. Orbital Mechanics 

Through his analysis of the motions of the planets, 
Kepler developed a series of principles. These principles 
is now known as Kepler’s Law of Planetary Motion. 
Using Tycho Brahe’s observation, Kepler found that the 
orbit of mars is, although not noticeable to the naked eye, 
not a circle, but an ellipsoid. The small difference 
between the circle and the ellipsoid is critical for 
understanding planetary motion. Kepler generalized the 
result in to Kepler’s first law of planetary motion: 
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“the orbit of all the planets are ellipses” 

Kepler’s second law deals with the speed with which 
each planet moves along its ellipses, also known as orbital 
speed. With Brage’s data, Kepler found that the planet 
speeds up as it comes closer to the Sun and slows down as 
it pulls away.  

Kepler found that it took equal amount of time (t) for 
Mars to swept the area A and the area B; that is, the area 
of the region B from 1 to 2 is equal to region A from 3 to 
4. 

 
FIGURE I 

DEMONSTRATION OF KEPLER’S SECOND LAW OF 
PLANETARY MOTION 

For many years after founding the first two law, 
Kepler worked to discover mathematical pattern 
governing the movements of the planets – a “harmony of 
the sphere” as he called it. In 1619. Kepler discovered a 
basic relationship between the planets’ orbit and their 
relative distance from the Sun. We define a planet’s 
orbital period, (P), as the time it takes a planet to travel 
once around the sun. The relationship now known as 
Kepler’s Third Law, says that a planet’s orbital period 
squared is proportional to the semimajor axis of its orbit 
cubed, or 

   (2) 

when P is measured in years and a is measured in a 
quantity known as astronomical unit (AU) which is the 
average distance between Earth and the Sun, 
approximately 1.5 × 108 Kilometers. This law applies to 
all objects orbiting the Sun. 

Kepler’s three laws of planetary motion can be 
summarized as follows: 

 Kepler’s first law: Each planet moves around 
the sun in an orbit that is an ellipse, with the sun 
at one focus of the ellipse 

 Kepler’s second law: The straight line joining a 
planet and the Sun sweeps out equal areas in 
space in equal interval of time. 

 Kepler’s third law: The square of a planet’s 
orbital period is directly proportional to the cube 
of the semimajor axis of its orbit. 

The orbital elements needed in calculating precise 
polar coordinate with the Sun as the center of reference 
are the orbit’s semi-major axis, eccentricity, inclination, 

longitude of ascending node, argument of periapsis, and 
the true anomaly. 

The semi-major axis ( ) is half the distance of the 
farthest point from each other in an ellipse (Otherwise 
known as the major axis). As seen in fig. 2, the semi-
major axis is denoted by a and the major axis as 2a. 

 
FIGURE II 

VISUALIZATION OF THE SEMI-MAJOR AXIS 

The eccentricity (e) of an orbit is the ratio of the 
distance between the focus and the major axis. The 
eccentricity denotes how an ellipse would take shape with 
the lesser it is, the more the ellipse will look like a circle 
with eccentricity of 0 forming a perfect circle [2]. 

The inclination (i) of an orbit is the angle between the 
K unit vector and the momentum vector h. This means 
that the inclination is the tilt of the orbit with the ecliptic 
plane. 

The longitude of ascending node (Ω) is the angle 
between the I unit vector in the fundamental plane and the 
point where the satellite cross through the it in a northerly 
direction. 

The argument of periapsis (ω) is the angle between the 
ascending node and the periapsis point. 

While the true anomaly (v) is the position of the 
celestial body in its orbit. 

These classical orbital elements is used to denote the 
orbit of a celestial body and also calculate its precise 
location in a heliocentric reference frame. 

Kepler’s equation is used to determine the relationship 
between time and angular displacement within the orbit. 
From Kepler’s second law, we can derive 

   (2) 

We can then use the notation for mean anomaly, M, as 

   (3) 

The mean anomaly at time t is given by 

   (4) 

From (3), we can find a solution using a couple of 
methods. The first method is to use the Newton-Raphson 
Method. 

In the Newton-Raphson Method, We first make an 
initial guess using eccentricity as a basis of our guess. 

 e < 0.3: E0 ≈ M 
 e ≥0.3: approximate  

Afterwards, we iteratively find E until the Difference is 
smaller than the tollerance [7]. 
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   (5) 

  (6) 

 

B. Rotational Dynamics 

Rotational dynamics focuses on how celestial bodies 
rotate in the Solar System while following its orbit. For 
planets, understanding rotation is useful for figuring out 
seasons, day-night cycle, and much more. Some key 
concepts which this paper use is: 

 Axial Tilt (θ): The angle between a planet’s 
orbit and rotation axis. For example, Earth has an 
axial tilt of 23.5º which is responsible for 
seasonal variation. An axial tilt can be 
represented mathematically as a unit vector [3] 

  (7) 

 Angular Velocity(ω): The rate of rotation of an 
object around its axis. Represented as  with 

  (8) 

 Rotational Kinematics: A point in a rotating 
body move in circular motion. The velocity at 
any point is 

  (9) 
With r being the position vector relative to the 
axis [4]. 

 Precession: Conical motion of the rotation axis 
caused by external torques. 

 Nutation: a variation of the inclination of the 
axis of a rotating object caused by short-term 
pertrubation [3]. 

C. Quaternions 

In 1843, Sir William Rowan Hamilton, while taking a 
walk with his wife, made a stunning discovery for a 
problem he has been interested in. He managed to expand 
the complex number system from R2 space to R3 space. 
His discovery consisted of a way to multiply unit vectors 
with each other. From then on, the world is graced by the 
knowledge of quaternions, a useful framework that we 
will use in this paper. 

Quaternions is a combination of a scalar value and a 
vector. It takes the form 

   (10) 

where a is the scalar part of the equation and v is the 
vector part. In quaternions, the result of multiplication of 
unit vectors follows a certain rule where 

 (11) 

 

FIGURE III 
UNIT VECTOR MULTIPLICATION RULE VISUAL 

REPRESENTATION 
 

As seen in Figure 3 and (11), if the multiplication follow 
along the path in figure 3, the result will be positive while 
if it fights the path, the result will be negative. 

Quaternion operation consists of addition, subtraction, 
and multiplication. The operations follow the same rule as 
normal algebra operation with the added rule of the unit 
vector multiplication. 

The magnitude of a quaternion is represented by 

   (12) 

where a, b, c, d is taken from (10). 
The conjugate of a quaternion (10) is represented by 

   (13) 

while the inverse of a quaternion of the form (10) follows 
[5]. 

   (14) 

Using quaternions, one can rotate a vector against an 
axis. 

suppose p is a vector in the R3 space. The image of p if 
p is rotated θ degree counter clockwise around the axis u 
will follow 

   (15) 

where 

   

   (16) 

and  is the unit vector of the axis [6]. 

 
III.   ANALYSIS 

A.  System Overview 
The framework combines orbital motion and rotational 

dynamics to model the position and orientation of a 
celestial body over time in a heliocentric reference frame. 

The workflow consists of first inputting the orbital 
elements of the celestial body. It will then calculate the 
position of the celestial body in a heliocentric reference 
frame based on the orbital elements. Next, the framework 
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will calculate the orientation of the body using 
quaternions as a means of efficient calculation. Lastly, the 
framework will output the position of the body and the 
quaternion describing its orientation. 
 

 
FIGURE IV 

WORKFLOW DIAGRAM OF THE FRAMEWORK 

B. Parameter Input 
For each celestial bodies, input the following parameters: 

 Semi-Major Axis ( ): Used to define the size of 
the orbit 

 Eccentricity ( ): A value  Used to 
define the concavity of the orbit with 0 forming a 
perfect circle. 

 Inclination (i): the tilt of the orbit with the 
ecliptic frame. 

 Longitude of Ascending Node (Ω): Used to 
denote the orientation of the orbital plane. 

 Argument of Periapsis (𝜔): Used to denote the 
orientation of the closest approach 

 Mean Anomaly (M0): the position of the body 
in it’s orbit at a given time to be used as a basis. 

 Axial Tilt (θ): the angle between the rotation 
axis and the orbital plane normal [3]. 

 Rotation Period (Trot): Time taken for the body 
to do one full rotation. 

 Initial Orientation (qold): Used as a basis for 
renewing the orientation quaternion. Usually 
uses (1,0,0,0). 

C. Orbital Motion 
The first thing to calculate in this module is the Mean 

Anomaly as it will be used in the next section. We first 
use (4) to calculate the Mean anomaly at a given time t. It 
will then be used to calculate the Eccentric Anomaly (E). 
Kepler’s equation is solved iteratively using the Newton-
Raphson method. 

The initial step in the Newton-Raphson method is to 
take an initial guess. If the eccentricity of the orbit is less 
than 3, it is advisable to use E ≈ M, while if the 
eccentricity is more than or equal to 3, it is better to use a 
better approximation 

   (17) 

Next we iteratively calculate En+1 as 

   (18) 

until the change in E is below the tolerance (maximum 
acceptable error [7]). 

  (19) 

We then use the E after convergence for calculating the 
true anomaly (v) using equation 

   (20) 

and use the true anomaly to calculate the orbital radius for 
use in converting the location to the cartesian system 

   (21) 

  (22) 

Afterwards, we create a transformation matrix to rotate 
the cartesian coordinate to the heliocentric 3D frame. 

First we use the inclination and the argument of 
periapsis to find the plane rotation matrix 

  

  (23) 

The resulting rotation matrix is 

  (24) 

Lastly, we calculate the heliocentric point by 
multiplying the rotation matrix with the initial point (20).  

D. Rotation Dynamic 
The next module in the framework follows is the 

rotation dynamic module. In it, we calculate the new 
orientation, taking the form of a quaternion, at time t. 

Firstly, calculate the angle the body rotated by using 
angular velocity from (6) 

  (25) 

Afterward, we use (14) to calculate the quaternion at a 
time t 

  (26) 

where, 

  (27) 

The body new orientation is represented as 

  (28) 
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E. Output Parameter 

The framework will output the position from the orbital 
motion section of the framework and its orientation from 
the rotation dynamic section. 

 Position: (x,y,z) coordinate with the Sun as the 
center. 

 Orientation: quaternion q(t) representing the 
body’s orientation. 

 
 

IV.   IMPLEMENTATION 

A. Overview 
The implementation of the framework is divided into 2 

components, the orbital motion part and the rotation 
dynamic part. We use the Newton-Raphson method to 
calculate the Eccentric anomaly and then calculate the 
true anomaly and lastly the 3D heliocentric position. The 
calculation of the orientation uses quaternions and is 
made very efficient rather than using euler angle, etc. The 
implementation of the framework is done in python while 
utilizing libraries like NumPy and SciPy. NumPy is used 
for ease of use with the matrix operations, quaternion 
operation, and other array concerned operation, while the 
SciPy library is used for calculating (18). 

B. Code Structure 
The code is structured into three parts. The main 

simulation, the orbital motion, and the rotational dynamic. 
C. Orbital Motion 
The orbital motion part of the code is called by calling 

the function orbital_position(). It first run the 
kepler_solver function which has the algorithm 

 
it then calculates the true anomaly and orbital radius to 
find the position in the orbital plane 

 
 
the calculate_true_anomaly function first made the 
numerator and then the denominator for the final arctan 
calculation. While the calculate_radius function just 

straight returns the radius in one single line. Afterward, 
the code calculate the rotation for the final position 
coordinate. 

 
The make_rotation_matrix function multiplies all 

rotation matrix needed for the longitude of ascending 
node, argument of periapsis, and inclination while the 
calculate_heliocentric(R, r, v) function returns an array of 
the modified cartesian coordinates. All the functions was 
then called within a bigger wrapper function which 
returns the final solution, which is the 
calculate_heliocentric function return value. 
 

D. Rotation dynamics 
In the rotation dynamic part of the code, the program 

runs a series of function that will return the new 
quaternion for the orientation of the body.  

Firstly, it counted the angle of rotation the body went 
through in the timeframe t using angular velocity formula. 
It then input the result into a function that generates a 
rotated quaternion from the unit vector of the axis and the 
angle it went through. 

The function follows (24) to calculate the scalar value 
of the quaternion and then the vector value of the 
quaternion. 

function make_rotation_matrix(Omega, omega, i) 
    R_Z_O  [[cos(Omega), -sin(Omega), 0] , 
    [sin(Omega), cos(Omega), 0],  
    [0, 0, 1]] 
    R_Z_o  [[cos(omega), -sin(omega), 0], 
    [sin(omega), cos(omega), 0], 
    [0, 0, 1]] 
    R_X_i  [[1,0,0], 
    [0, cos(i), -sin(i)], 
    [0, sin(i), cos(i)]] 
    R  R_Z_O * R_Z_o * R_X_i 
    R 
 
function calculate_heliocentric(R, r, v) 
    R*[r*cos(v), r*sin(v), 0] 

function get_position(a, M, e, Omega, omega, i) 
    E kepler_solver(M,e) 
    v calculate_true_anomaly(E,e) 
    r calculate_radius(a, e,v) 
    R make_rotation_matrix(Omega, omega, i) 
    calculate_heliocentric(R,r,v) 

function quat_from_axis_angle(axis, angle) 
    w  cos(angle/2) 
    x  axis[0]*sin(angle/2) 
    y axis[1]*sin(angle/2) 
    z axis[2]*sin(angle/2) 
    [w,x,y,z] 

function kepler_solver(M, e) 
    E  M 
    while | E – e*sin(E) – M| > tolerance, do 
        E   E – (E – e*sin(E)-M) / (1-e*cos(E)) 
    E 

function calculate_true_anomaly(E, e)  
    x  sqrt(1+e)*sin(E/2) 
    y  sqrt(1-e)*cos(E/2) 
    v  2*atan(x/y) 
     v 
 
function calculate_radius(a, e, v)  
    a*(1-e**2)/(1+e*cos(v)) 
 



Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025 
 

E. Main Simulation 
The main simulation is a wrapper for all of the other 

functions in the program. In the main simulation, the 
program ask for the required input of orbital elements 
from the user and then calculates the necessary output 
using the functions in the other parts. 

 
V.   CONCLUSION 

The ability to locate celestial objects in the Solar 
System is very important in the pursuit of the unknown. 
With the knowledge of where a celestial body will be in a 
specific time, we, humankind, have been able to discover 
much new knowledge of the universe. Unfortunately, the 
usage of traditional methods of calculation is widely 
inefficient in both computing time and power. Therefore, 
the use of quaternions has been proven to be useful for 
cutting down computing time and resources. We also 
managed to build a framework in which anyone can 
calculate the exact location and orientation of a celestial 
body in our universe at any given time.  
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